select
navigate
switch tabs
Esc close

CNC machining of sharp internal corners

0
1

What are some methods to perform CNC machining of sharp internal corners?

Solved by Nikolaus Mroncz
CNC machining sharp internal corners can be challenging due to the inherent limitations of machining processes and the tool geometry. Here are several methods that can be employed to tackle this issue: 1. Adding reliefs: This is a commonly used method where certain shapes are added to the corners to accommodate the roundness of the milling tool. There are various types of reliefs such as:
  • A hole centered in each corner: This is the cheapest solution and involves placing a hole at the corner where two internal edges meet
  • Half-Moon relief: A slightly more expensive option than the hole, shaped like a half-circle at the corner
  • Internal Radii: This is another form that is equivalent in cost to the half-moon and involves creating a rounded internal corner
2. Avoidance of sharp corners: Where possible, the design can be altered to avoid sharp corners altogether. Instead, radii are included on all internal edges, using an end mill with a radius slightly smaller than the added edge radius 3. Dog-bone or T-bone fillets: These are specific types of undercuts that can be used to extend the corner shape beyond the cut area. This allows the milling tool to either complete a full rotation or to back up slightly to create a sharp angle following the tool path 4. Electrical Discharge Machining (EDM): For cases where sharp internal corners are essential and cannot be avoided, electrical discharge machining can be used. This process involves creating sharp corners by eroding the material with electrical discharges. It is noted, however, that EDM tends to be an expensive method It is generally suggested to design parts in a way that avoids the need for sharp internal corners due to the complexity and additional cost involved in manufacturing them. The best approach often involves collaboration between designers and machinists to find a manufacturable compromise that meets the design requirements while being feasible to machine.
    • What are some methods to perform CNC machining of sharp internal corners?

      0
    • Xometry Engineer

      CNC machining sharp internal corners can be challenging due to the inherent limitations of machining processes and the tool geometry. Here are several methods that can be employed to tackle this issue:

      1. Adding reliefs: This is a commonly used method where certain shapes are added to the corners to accommodate the roundness of the milling tool. There are various types of reliefs such as:

      • A hole centered in each corner: This is the cheapest solution and involves placing a hole at the corner where two internal edges meet
      • Half-Moon relief: A slightly more expensive option than the hole, shaped like a half-circle at the corner
      • Internal Radii: This is another form that is equivalent in cost to the half-moon and involves creating a rounded internal corner

      2. Avoidance of sharp corners: Where possible, the design can be altered to avoid sharp corners altogether. Instead, radii are included on all internal edges, using an end mill with a radius slightly smaller than the added edge radius

      3. Dog-bone or T-bone fillets: These are specific types of undercuts that can be used to extend the corner shape beyond the cut area. This allows the milling tool to either complete a full rotation or to back up slightly to create a sharp angle following the tool path

      4. Electrical Discharge Machining (EDM): For cases where sharp internal corners are essential and cannot be avoided, electrical discharge machining can be used. This process involves creating sharp corners by eroding the material with electrical discharges. It is noted, however, that EDM tends to be an expensive method

      It is generally suggested to design parts in a way that avoids the need for sharp internal corners due to the complexity and additional cost involved in manufacturing them. The best approach often involves collaboration between designers and machinists to find a manufacturable compromise that meets the design requirements while being feasible to machine.

      0
      Reply
CNC machining of sharp internal corners
Your information:




Suggested Topics

Topic
Replies
Views
Activity
Slim linear guide for precise lab automation stage
I’m designing a compact linear stage for a lab automation setup, used to move a microplate (about 300 grams) precisely along a 150 mm travel. The system needs to achieve repeatability under ±0.05 mm... read more
J
0
77
Advice on plastic insert gripping an inner rotating tube
Hello, I'm designing a plastic coupling sleeve to mount an aluminum shaft (20 mm OD) from the inside. The sleeve needs to grip the shaft firmly enough to transmit rotational torque from a small... read more
P
J
4
103
Aug 21
O-ring seal design for removable marine sensor housing
Hi! My project is a small-scale marine sensor housing; it needs to stay functional when briefly submerged (around 0.5 m depth) or exposed to heavy splashes on a boat deck. I’m using a machined... read more
H
H
D
9
498
Aug 22
Compact two-axis rotation without U-joints?
Hi all! I’m building a compact gimbal for a sensor head that needs to rotate around two perpendicular axes (pan and tilt). I’m trying to stay away from standard U-joints — they take up... read more
D
b
4
1.4k
Aug 14
SLA wall thickness issue for microfluidic channels
Hi, I created a 3D design for a small microfluidic part using SLA (Clear Resin) with internal channels ~0.4 mm wide and wall thickness around 0.5 mm. The function relies on optical inspection through... read more
B
c
1
184
Jul 29