select
navigate
switch tabs
Esc close

3D printing large flat parts

0
A
2

Hello, what is the best 3D printing process for creating large flat parts that is less prone to warping? This has been a significant concern in initial tests with FDM, especially around the edges. I am also looking for a finer printing resolution, around 0.1 mm per layer if possible. Would a process like SLS or MJF be better suited for this type of application? Or are there other techniques or material combinations that might help maintain the flatness and precision at this scale?

Solved by Greg Paulsen

FDM, particularly industrial FDM like running on a Stratasys Fortus, will be the best plastic 3D printing process to mitigate warping. I recommend exploring materials like ASA and polycarbonate for large, broad, flat parts. Avoid "warpy" plastics like nylon or ULTEM unless absolutely necessary.

FDM is better than SLS or MJF because the parts are built attached to a flat build plate. SLS and MJF do not have any supporting structures so broad parts can twist or flex during cooling. The sacrifice is in detail resolution. Maybe you could explore a hybrid approach in your design or splitting and assembling to achieve your results.

    • A

      Hello, what is the best 3D printing process for creating large flat parts that is less prone to warping? This has been a significant concern in initial tests with FDM, especially around the edges. I am also looking for a finer printing resolution, around 0.1 mm per layer if possible. Would a process like SLS or MJF be better suited for this type of application? Or are there other techniques or material combinations that might help maintain the flatness and precision at this scale?

      0
    • Xometry Engineer

      FDM, particularly industrial FDM like running on a Stratasys Fortus, will be the best plastic 3D printing process to mitigate warping. I recommend exploring materials like ASA and polycarbonate for large, broad, flat parts. Avoid “warpy” plastics like nylon or ULTEM unless absolutely necessary.

      FDM is better than SLS or MJF because the parts are built attached to a flat build plate. SLS and MJF do not have any supporting structures so broad parts can twist or flex during cooling. The sacrifice is in detail resolution. Maybe you could explore a hybrid approach in your design or splitting and assembling to achieve your results.

      0
      Reply
      • A
        Greg Paulsen

        Thanks, Greg! That’s super helpful. Appreciate the insights!

        0
        Reply
3D printing large flat parts
Your information:




Suggested Topics

Topic
Replies
Views
Activity
Mesh accuracy concerns with FDM
I'm working on a small gear-driven mechanism for a camera panning rig and considering printing the 45° bevel gears in PETG (FDM). Tooth pitch is 1.5 mm, and the gears will be rotating slowly... read more
M
n
3
21
Apr 29
OD and ID vs OD and Wall Thickness – which is the best method of dimensioning?
Hello All, I am designing a conical-shaped plastic bushing and am confused if specifying the OD and the wall thickness is better for controlling the manufacturing process, or OD and ID separately, with their tolerance... read more
1
56
Apr 23
Metal 3D printing for watertight watch cases
Hi! I'm prototyping a watch case and considering metal laser sintering (DMLS or SLM) due to cost constraints—CNC machining is out of budget. My main concern is whether an as-printed sintered metal part will... read more
H
R
2
143
Mar 25
99 model kia sephia kontak termiği yapabilir misiniz
99 model kia sephia kontak termiği yapabilir misiniz kontak anahtarının girdiği yerde 3 tane kırık var onun için anahtarı tam olarak kavramıyor ve motoru çalıştırmıyor bu kırığın yapılması gerekiyor veya değişmesi gerekiyor fakat piyasa... read more
S
1
113
Mar 19
Moulding of a Concave Disk
Hello everyone, I want to make a disk of 203 mm in diameter, 25 mm in height with a concave curvature of 3.22 mm.Will this precision be respected knowing that I am not a... read more
1
143
Mar 17