select
navigate
switch tabs
Esc close

Best practices for dimensioning parallelism from a datum

0
G
1

Hi, how do you handle dimensioning parallelism for critical parts? I’m debating between using basic dimensions with profile tolerances vs. a combination of ± tolerance and parallelism control. What methods and standards do you rely on for ensuring accurate alignment? Any specific guidelines or best practices you follow in your workflow?

Solved by Joao Clemencio

Hi Gregory,

When it comes to dimensioning parallelism, both methods—using basic dimensions with profile tolerances and a combination of ± tolerance with parallelism control—have their place, but here's how I typically approach it:

Basic Dimensions with Profile Tolerances:
When to Use: Best for high-precision parts where you need tight control over form, orientation, and size in one go.
Why: Profile tolerances give you more comprehensive control, making sure everything aligns as it should without piling on separate tolerances for each feature.
Standards: I follow ASME Y14.5 for this, as it’s the gold standard in GD&T. It’s also aligned with ISO 1101 internationally.

± Tolerance with Parallelism Control:
When to Use: Ideal for simpler parts or when you’re mainly concerned with the size and basic alignment.
Why: It’s more straightforward and easier for teams familiar with traditional tolerancing methods. Plus, inspection can often be simpler with standard tools.
Standards: Still sticking with ASME Y14.5, but ISO 2768 is good if you’re working with general tolerances.

If precision is critical and you’re dealing with complex geometry, go with basic dimensions + profile tolerances. For simpler parts, ± tolerance with parallelism control should work fine and might save time and effort.

Hope this helps! Let me know if you need more details or have other questions!

    • G

      Hi, how do you handle dimensioning parallelism for critical parts? I’m debating between using basic dimensions with profile tolerances vs. a combination of ± tolerance and parallelism control. What methods and standards do you rely on for ensuring accurate alignment? Any specific guidelines or best practices you follow in your workflow?

      0
    • Xometry Engineer

      Hi Gregory,

      When it comes to dimensioning parallelism, both methods—using basic dimensions with profile tolerances and a combination of ± tolerance with parallelism control—have their place, but here’s how I typically approach it:

      Basic Dimensions with Profile Tolerances:
      When to Use: Best for high-precision parts where you need tight control over form, orientation, and size in one go.
      Why: Profile tolerances give you more comprehensive control, making sure everything aligns as it should without piling on separate tolerances for each feature.
      Standards: I follow ASME Y14.5 for this, as it’s the gold standard in GD&T. It’s also aligned with ISO 1101 internationally.

      ± Tolerance with Parallelism Control:
      When to Use: Ideal for simpler parts or when you’re mainly concerned with the size and basic alignment.
      Why: It’s more straightforward and easier for teams familiar with traditional tolerancing methods. Plus, inspection can often be simpler with standard tools.
      Standards: Still sticking with ASME Y14.5, but ISO 2768 is good if you’re working with general tolerances.

      If precision is critical and you’re dealing with complex geometry, go with basic dimensions + profile tolerances. For simpler parts, ± tolerance with parallelism control should work fine and might save time and effort.

      Hope this helps! Let me know if you need more details or have other questions!

      0
      Reply
Best practices for dimensioning parallelism from a datum
Your information:




Suggested Topics

Topic
Replies
Views
Activity
Fastener size choice for a through-hole in 4 mm anodized aluminum plate
Hi! Designing a lightweight enclosure for a small UAV component, using 4 mm thick anodized aluminum sheets. For the assembly, I need to fasten this plate to a 3D-printed ABS bracket underneath, which acts as... read more
K
0
5
May 30
Cracking at snap-fit hook base in SLS PA12
Hello everyone, I'm using SLS 3D printing (PA12, 0.12 mm layer height) to create a snap-fit enclosure for a handheld sensor device. The enclosure has three internal hooks that flex about 1.5 mm during... read more
F
A
1
30
May 26
Choosing sheet metal thickness for a lightweight bracket
Hey, working on a small mounting bracket for a consumer electronics housing, cut and bent from stainless steel sheet (304 or 316). The part needs to stay under 200g, but it also has to... read more
D
M
1
44
May 23
Visibility of parting line on GF30 PA6 injection molded handle
Hello everyone, how visible can the parting line be on final molded parts? My team is currently designing a handle cover for an industrial machine, injection molded in PA6 with 30% glass fiber. Aesthetics... read more
T
C
1
68
May 06
Minimum embossed text size for TPU molding
Hey there, I'm designing a flexible watch strap that will be injection molded in TPU (Shore 85A). I want to include some small embossed text (branding and serial number) directly on the strap, but... read more
A
n
2
97
May 05