select
navigate
switch tabs
Esc close

3D printing large flat parts

0
A
2

Hello, what is the best 3D printing process for creating large flat parts that is less prone to warping? This has been a significant concern in initial tests with FDM, especially around the edges. I am also looking for a finer printing resolution, around 0.1 mm per layer if possible. Would a process like SLS or MJF be better suited for this type of application? Or are there other techniques or material combinations that might help maintain the flatness and precision at this scale?

Solved by Greg Paulsen

FDM, particularly industrial FDM like running on a Stratasys Fortus, will be the best plastic 3D printing process to mitigate warping. I recommend exploring materials like ASA and polycarbonate for large, broad, flat parts. Avoid "warpy" plastics like nylon or ULTEM unless absolutely necessary.

FDM is better than SLS or MJF because the parts are built attached to a flat build plate. SLS and MJF do not have any supporting structures so broad parts can twist or flex during cooling. The sacrifice is in detail resolution. Maybe you could explore a hybrid approach in your design or splitting and assembling to achieve your results.

    • A

      Hello, what is the best 3D printing process for creating large flat parts that is less prone to warping? This has been a significant concern in initial tests with FDM, especially around the edges. I am also looking for a finer printing resolution, around 0.1 mm per layer if possible. Would a process like SLS or MJF be better suited for this type of application? Or are there other techniques or material combinations that might help maintain the flatness and precision at this scale?

      0
    • Xometry Engineer

      FDM, particularly industrial FDM like running on a Stratasys Fortus, will be the best plastic 3D printing process to mitigate warping. I recommend exploring materials like ASA and polycarbonate for large, broad, flat parts. Avoid “warpy” plastics like nylon or ULTEM unless absolutely necessary.

      FDM is better than SLS or MJF because the parts are built attached to a flat build plate. SLS and MJF do not have any supporting structures so broad parts can twist or flex during cooling. The sacrifice is in detail resolution. Maybe you could explore a hybrid approach in your design or splitting and assembling to achieve your results.

      0
      Reply
      • A
        Greg Paulsen

        Thanks, Greg! That’s super helpful. Appreciate the insights!

        0
        Reply
3D printing large flat parts
Your information:




Suggested Topics

Topic
Replies
Views
Activity
Best way to mount NEMA 17 motor on 2 mm aluminum base?
I'm working on a compact test rig where I need to mount a NEMA 17 stepper motor onto a 2 mm thick aluminum sheet (EN AW-5754). The base has to stay as light as possible,... read more
T
r
1
22
May 28
Sheet metal hem
Hello, I'm trying to create a hem on the edge of steel sheets between 200mm and 400mm long. I can't find any manufacturer in France who can perform such bending/rolling/shaping with a radius of... read more
s
P
1
33
May 23
Mesh accuracy concerns with FDM
I'm working on a small gear-driven mechanism for a camera panning rig and considering printing the 45° bevel gears in PETG (FDM). Tooth pitch is 1.5 mm, and the gears will be rotating slowly... read more
M
n
3
125
Apr 29
OD and ID vs OD and Wall Thickness – which is the best method of dimensioning?
Hello All, I am designing a conical-shaped plastic bushing and am confused if specifying the OD and the wall thickness is better for controlling the manufacturing process, or OD and ID separately, with their tolerance... read more
1
157
Apr 23
Metal 3D printing for watertight watch cases
Hi! I'm prototyping a watch case and considering metal laser sintering (DMLS or SLM) due to cost constraints—CNC machining is out of budget. My main concern is whether an as-printed sintered metal part will... read more
H
R
2
240
Mar 25