select
navigate
switch tabs
Esc close

Floating parts with 3D printing

0
E
5

Hello ,

I’m using an SLA printer with high-resolution resin (25-micron layer height), for a miniature satellite component prototype, specifically a multi-chamber fluid management system intended for microgravity environments. 

The design features intricate internal structures, including floating baffles and valve mechanisms, which are essential for controlling fluid flow. I’m facing challenges with support structures that interfere with these delicate internal components. What strategies do you recommend for optimizing support structures for floating internal components without compromising the part’s functionality or surface finish? 
The final product needs to maintain tight tolerances (±0.05 mm) and smooth internal surfaces for optimal fluid dynamics.

Solved by Damon Ali
The most effective approach is selecting the build orientation to reduce the need for support. While that's pretty obvious advice, if you have much design freedom then you might be able to reorient features to reduce the supports further. Can you break your device into individual chambers that are bonded together after printing? That should give you more freedom with build orientation. Where you can try to minimize undercuts in the areas that do need support. When you say 'floating baffles', can they float on lattice structures you design as supports? Dual-purpose features might reduce the number of supports to remove and clean up.
    • E

      Hello ,

      I’m using an SLA printer with high-resolution resin (25-micron layer height), for a miniature satellite component prototype, specifically a multi-chamber fluid management system intended for microgravity environments. 

      The design features intricate internal structures, including floating baffles and valve mechanisms, which are essential for controlling fluid flow. I’m facing challenges with support structures that interfere with these delicate internal components. What strategies do you recommend for optimizing support structures for floating internal components without compromising the part’s functionality or surface finish? 
      The final product needs to maintain tight tolerances (±0.05 mm) and smooth internal surfaces for optimal fluid dynamics.

      0
    • D

      The most effective approach is selecting the build orientation to reduce the need for support. While that’s pretty obvious advice, if you have much design freedom then you might be able to reorient features to reduce the supports further. Can you break your device into individual chambers that are bonded together after printing? That should give you more freedom with build orientation.

      Where you can try to minimize undercuts in the areas that do need support.

      When you say ‘floating baffles’, can they float on lattice structures you design as supports? Dual-purpose features might reduce the number of supports to remove and clean up.

      0
      Reply
      • E
        Damon Ali

        Yeah, I’ve done the best I can in these aspects, but I don’t have enough design freedom to lose all the support. I will look at individual chamber builds to reduce the need for support. Sounds structurally and leakage risky, but maybe rewarding.

        I like the idea of the baffles being designed to integrate supports, that has real potential.

        0
        Reply
      • C
        E. Begum

        Also, thin-walled lattice supports can be left in place with minimized obstruction of fluid flow. Though I would not trust any automated lattice fill tools, model the features fully yourself. Align them with the ideal flow direction you want to impose. Oh, and taper the entry/exit edges to reduce flow influence.

        0
        Reply
      • D
        Chris Jenkins

        Presumably, you can get access in some areas to break off the supports. Can you increase access by integrating holes and bonded plugs to open up the most difficult areas?

        Also, for supports that you are able to break off, you can design them with small, multipoint tapered contact dots or local necking to allow gentle break off and ease cleanup.

        Finally, be strategic about placing supports – keep them away from flow-critical zones to reduce any downside flow influence you’re stuck with.

        Oh, and I suggest you design all your supports into your model, rather than trusting any automated support structures the printer layout software imposes in the build. No software-built supports can ever have the understanding of the fluid mechanics of the real-use context you’ve got!

        0
        Reply
      • E
        Damon Ali

        Thanks, that’s some helpful strategies.

        0
        Reply
      • D
        E. Begum

        It’d be great to see what direction this takes if you could share some details later.

        0
        Reply
Floating parts with 3D printing
Your information:




Suggested Topics

Topic
Replies
Views
Activity
Embossed vs. engraved text for outdoor molded parts
Hi there, I need to add a part number and recycling symbol on the surface of molded parts in PP GF20 for outdoor use. I initially planned to use engraved text for aesthetic reasons,... read more
T
0
12
Jul 25
Minimum hole diameter vs sheet thickness 316L
Hello, I would like to produce a stainless steel 316L bracket, 3 mm thick, cut by fiber laser. I need to include several small holes for drainage and fastening, and I’ve heard there might... read more
F
A
1
28
Jul 25
Ejector pin placement near snap-fit
I’m working on a small injection-molded housing for an automotive sensor, using PA6 GF30. There are two snap-fit arms inside (cantilever type), about 2 mm-thick walls. I’m not sure where to place the ejector... read more
M
T
5
89
Jul 18
Adding countersinks to formed stainless sheet metal
Hello, I'm working on a sheet metal enclosure (as in the image) that requires flush mounting for M6 countersunk screws. I need to add a countersink on a few holes, but the part is... read more
D
M
D
2
110
Jul 03
Fastener size choice for a through-hole in 4 mm anodized aluminum plate
Hi! Designing a lightweight enclosure for a small UAV component, using 4 mm thick anodized aluminum sheets. For the assembly, I need to fasten this plate to a 3D-printed ABS bracket underneath, which acts as... read more
K
e
E
3
156
Jun 30