select
navigate
switch tabs
Esc close

Maximum safe draw depth for aluminum

0
E
6

Hi everyone, I’m designing an automotive underbody heat shield using 0.8 mm thick aluminum alloy 5052-H32 for progressive die stamping. My main challenge is determining the optimal draw depth for complex geometries without risking material thinning or tearing. Some areas of the part require a draw depth of up to 25 mm. Given the material properties and thickness, I’m concerned about maintaining part integrity during the deep drawing process. 

I’m looking for advice on:

  • Calculating the maximum safe draw depth for this specific material and thickness
  • Strategies to achieve deeper draws without compromising material integrity

Has anyone worked with similar geometries and materials? What approaches have you found successful in optimizing draw depth while ensuring part quality?

Solved by Marshall

Hi,
To perform a basic check you can check the limiting draw ratio (LDR) using this formula: LDR =Dmax/d

Where Dmax is the maximum diameter of the blank and d is the diameter of the punch. You can determine the blank diameter using: r1 = r2(r2 + 2H)

Where r1 is the radius of the blank, r2 radius of the cup and H is the height of the cup. Once you have the blank radius you can calculate the LDR. Ultimately, you need to get the specific LDR for the material you are using from the material supplier. If your calculated LDR falls in the recommended range indicated by the supplier, then you should be able to deep draw the material. 

    • E

      Hi everyone, I’m designing an automotive underbody heat shield using 0.8 mm thick aluminum alloy 5052-H32 for progressive die stamping. My main challenge is determining the optimal draw depth for complex geometries without risking material thinning or tearing. Some areas of the part require a draw depth of up to 25 mm. Given the material properties and thickness, I’m concerned about maintaining part integrity during the deep drawing process. 

      I’m looking for advice on:

      • Calculating the maximum safe draw depth for this specific material and thickness
      • Strategies to achieve deeper draws without compromising material integrity

      Has anyone worked with similar geometries and materials? What approaches have you found successful in optimizing draw depth while ensuring part quality?

      0
    • M

      Hi,
      To perform a basic check you can check the limiting draw ratio (LDR) using this formula: LDR =Dmax/d

      Where Dmax is the maximum diameter of the blank and d is the diameter of the punch. You can determine the blank diameter using: r1 = r2(r2 + 2H)

      Where r1 is the radius of the blank, r2 radius of the cup and H is the height of the cup. Once you have the blank radius you can calculate the LDR. Ultimately, you need to get the specific LDR for the material you are using from the material supplier. If your calculated LDR falls in the recommended range indicated by the supplier, then you should be able to deep draw the material. 

      0
      Reply
      • E
        Marshall

        Thank you Marshall, the calculation you provided seems to be for a cylindrical shape, how can I determine the max draw depth of more complex shapes?

        0
        Reply
      • M
        Esme Shaw

        The above equation was presented as a simple way to check if your material can be deep drawn. If it fails this check then it definitely won’t work for more complex shapes. For a more detailed analysis on a complex geometry, you will have to perform an FEA analysis. Alternatively, you can reach out to a deep drawing company as they will have more than enough experience to tell you if you can or cannot manufacture your part using your chosen material.

        0
        Reply
      • L
        Marshall

        As another user mentioned, you will not be able to do a simple hand calculation to check if your material can be deep-drawn. However, there are a few techniques that can reduce the possibility of failure when deep drawing difficult geometries. For example, lubrication, die design, and blank clamp pressure optimization can all help reduce common failure modes.

        0
        Reply
      • E
        Lloyd

        These interventions will all be in the control of the workshop manufacturing the part, is there anything I can do from a design or material selection perspective to improve formability?

        0
        Reply
      • L
        Esme Shaw

        Hi Esme, one thing I can think of is to use a softer material, for example, 5052-O, and then temper the completed part to 5050-H32.

        0
        Reply
Maximum safe draw depth for aluminum
Your information:




Suggested Topics

Topic
Replies
Views
Activity
How to correctly specify standard and non-standard threads in a technical drawing?
For a machined part that has both standard and non-standard thread types, what’s the best way to call out threads in the technical drawing? In particular, should I use thread callouts or full detail... read more
I
0
8
Oct 30
Drawing callout for tight tolerance over short bore length
hi, I have an aluminum housing for a small gearbox where the bearing seats are, of course, critical. I need to hold tight tolerances on the ID and OD, but only over a short... read more
A
0
14
Oct 29
DMLS tolerances for screw holes and sealing surfaces
Hi, I’m working on a small metal housing (around 120 × 80 × 40 mm) that will be 3D printed with DMLS for a sensor module. It needs threaded M3 screw holes and a... read more
C
M
4
90
Oct 28
Design challenge: rope-to-rope transfer in a small cylindrical coupling
Hi, working now on a small-scale linear actuator project and need a compact coupling between two coaxial cylinders. Both are 44 mm in diameter, with the upper one hollow (22 mm inner Ø). The... read more
V
E
4
112
Oct 17
Compact linear slide – how to balance smooth travel with lateral stability
hi!I’m working on a compact linear slide mechanism for a handheld inspection tool. The carriage rides between two vertical guide rails and has to remain laterally constrained while still moving smoothly along the axis.... read more
C
A
4
177
Oct 15