select
navigate
switch tabs
Esc close

Optimizing support structures for DMLS printing

0
T
2

Hello everyone, I’m working on a DMLS turbine blade with some overhangs and complex curvature, and I’ve run into challenges with support structures. I’ve noticed that removing the supports leaves marks and sometimes even warps the part, especially with unsupported angles over 30°. I’ve shortened the CAD file, but I’d appreciate any advice on minimizing the use of support structures while still ensuring the part prints correctly. Are there specific design modifications or strategies that have worked well for you to reduce post-processing issues like warping or stress? This is my part and a section through it:

Solved by Christopher_K

Another target is minimal-contact or tree supports, to reduce contact with the part, reducing post-processing. These blades will be challenging to get to a good finish. Materialize Magics and Autodesk Netfabb allows customized support thickness and contact points, helping control where and how much the supports connect.

It can help if you reinforce by thickening walls or adding ribs to distribute heat more evenly, reducing warping. Internal ribs within the back-face hollow might help a lot in imposing rigidity. Consider heat paths during printing, as uneven cooling causes distortion. Slower, controlled cooling can also help reduce stress and improve dimensional stability.

    • a

      Hey Theodore, your part is challenging—a lot of steep overhangs and need for full supports across the whole diameter, combined with thin sections that need to be held to shape. To minimize support structures in easy-printing layouts for DMLS, you can start by optimizing the build orientation. Your part might work best mounted with blade tips toward the table. You can’t control the overhang angles by orienting, but thermal management will be helpful because there’ll be a bigger thermal mass before the full diametral strain needs to be accommodated.

      Variable support intensity should work—where the blades are at a shallower angle (the long blade tips) and closer to the core, less support will be needed—though that’s complex to specify in the CAM software. But this reduces the need for support, so less cleanup is needed.

      0
      Reply
    • C

      Another target is minimal-contact or tree supports, to reduce contact with the part, reducing post-processing. These blades will be challenging to get to a good finish. Materialize Magics and Autodesk Netfabb allows customized support thickness and contact points, helping control where and how much the supports connect.

      It can help if you reinforce by thickening walls or adding ribs to distribute heat more evenly, reducing warping. Internal ribs within the back-face hollow might help a lot in imposing rigidity. Consider heat paths during printing, as uneven cooling causes distortion. Slower, controlled cooling can also help reduce stress and improve dimensional stability.

      0
      Reply
Optimizing support structures for DMLS printing
Your information:




Suggested Topics

Topic
Replies
Views
Activity
FEA of a welded tow hitch
Hi! Need help on a welded tow hitch for an off-road vehicle using S355 steel tubing and 8 mm plates. It needs to handle a 3,500 kg towing load with off-axis forces. In ANSYS,... read more
L
R
1
46
Apr 10
Best gear setup for a compact robotic arm gearbox
Hi,Working on a compact gearbox for a robotic arm and need advice on the best gear setup. The arm sees intermittent loads, max torque at the output is 15 Nm, and I need about... read more
R
M
2
63
Apr 16
How to call out helicoils or inserts on a drawing?
Hey,My aluminum part needs reinforced threads, so I’m looking at using Helicoils or possibly another type of insert if the machinist has a better suggestion (I’ll have my part produced by an external manufacturer).... read more
M
1
145
Mar 31
Deep C-channel in 2 mm stainless
Hi all, working on a sheet metal design and trying to form a C-channel in 2mm stainless (304). The depth is 50mm, and I’m wondering if I’m asking for trouble with bending—springback, cracking, or... read more
E
R
M
2
138
Mar 27
Will a 6mm dowel fit in this hole?
hello, I'm designing a part with an FDM 3D printed hole to hold a 6mm wooden dowel, but I’m unsure about the actual fit due to print tolerances and material shrinkage. The hole is... read more
b
1
117
Mar 14