en – Global
Knowledge & Community
Search
K
Quote & source your parts
select
navigate
switch tabs
Esc close

Optimizing support structures for DMLS printing

0
T
2

Hello everyone, I’m working on a DMLS turbine blade with some overhangs and complex curvature, and I’ve run into challenges with support structures. I’ve noticed that removing the supports leaves marks and sometimes even warps the part, especially with unsupported angles over 30°. I’ve shortened the CAD file, but I’d appreciate any advice on minimizing the use of support structures while still ensuring the part prints correctly. Are there specific design modifications or strategies that have worked well for you to reduce post-processing issues like warping or stress? This is my part and a section through it:

Solved by Christopher_K

Another target is minimal-contact or tree supports, to reduce contact with the part, reducing post-processing. These blades will be challenging to get to a good finish. Materialize Magics and Autodesk Netfabb allows customized support thickness and contact points, helping control where and how much the supports connect.

It can help if you reinforce by thickening walls or adding ribs to distribute heat more evenly, reducing warping. Internal ribs within the back-face hollow might help a lot in imposing rigidity. Consider heat paths during printing, as uneven cooling causes distortion. Slower, controlled cooling can also help reduce stress and improve dimensional stability.

    • T

      Hello everyone, I’m working on a DMLS turbine blade with some overhangs and complex curvature, and I’ve run into challenges with support structures. I’ve noticed that removing the supports leaves marks and sometimes even warps the part, especially with unsupported angles over 30°. I’ve shortened the CAD file, but I’d appreciate any advice on minimizing the use of support structures while still ensuring the part prints correctly. Are there specific design modifications or strategies that have worked well for you to reduce post-processing issues like warping or stress? This is my part and a section through it:

      0
    • a

      Hey Theodore, your part is challenging—a lot of steep overhangs and need for full supports across the whole diameter, combined with thin sections that need to be held to shape. To minimize support structures in easy-printing layouts for DMLS, you can start by optimizing the build orientation. Your part might work best mounted with blade tips toward the table. You can’t control the overhang angles by orienting, but thermal management will be helpful because there’ll be a bigger thermal mass before the full diametral strain needs to be accommodated.

      Variable support intensity should work—where the blades are at a shallower angle (the long blade tips) and closer to the core, less support will be needed—though that’s complex to specify in the CAM software. But this reduces the need for support, so less cleanup is needed.

      0
      Reply
    • C

      Another target is minimal-contact or tree supports, to reduce contact with the part, reducing post-processing. These blades will be challenging to get to a good finish. Materialize Magics and Autodesk Netfabb allows customized support thickness and contact points, helping control where and how much the supports connect.

      It can help if you reinforce by thickening walls or adding ribs to distribute heat more evenly, reducing warping. Internal ribs within the back-face hollow might help a lot in imposing rigidity. Consider heat paths during printing, as uneven cooling causes distortion. Slower, controlled cooling can also help reduce stress and improve dimensional stability.

      0
      Reply
Optimizing support structures for DMLS printing
Your information:




Suggested Topics

Topic
Replies
Views
Activity
Thermal expansion modelling for a braced rectangular steel tank
hi, for a welded steel coolant reservoir for a test stand - 4 m × 2 m × 1.5 m with internal bracing I need to account for thermal expansion. Fluid runs at 80–90... read more
B
0
12
Dec 22
Designing holes for M3 threaded inserts in an ABS enclosure
Hi! In my design for a small ABS enclosure for an onboard sensor module I want to switch from molded bosses to heat-set M3 inserts for the lid screws. Before I finalize CAD, what... read more
A
o
1
39
Dec 23
Airtight joint between two aluminum frame enclosures?
Hi, I have two 400 mm cubical enclosures from 20×20 mm aluminum profiles with glass on all sides except one. I need to connect them into a single temperature-controlled unit and keep the joint... read more
M
F
1
118
Dec 12
SLA wall thickness issue for microfluidic channels
Hi, I created a 3D design for a small microfluidic part using SLA (Clear Resin) with internal channels ~0.4 mm wide and wall thickness around 0.5 mm. The function relies on optical inspection through... read more
B
c
1
1.2k
Jul 29
Embossed vs. engraved text for outdoor molded parts
Hi there, I need to add a part number and recycling symbol on the surface of molded parts in PP GF20 for outdoor use. I initially planned to use engraved text for aesthetic reasons,... read more
T
R
A
3
2.5k
Aug 08